Penyisihan Polutan pada Palm Oil Mill Effluent (POME) Menggunakan Konsorsium Mikroalga-Bakteri dengan Sistem High Rate Algae Reactor (HRAR)

Shinta Elystia, Vonny Meidina Rizani, Sri Rezeki Muria

Abstract


Palm oil mills in addition to producing crude palm oil also produce by-products in the form of Palm Oil Mill Effluent (POME). POME contains high amounts of organic ingredients and pollutants. One method that can be applied to treat POME is the High Rate Algae Reactor (HRAR) System. The HRAR system uses microalgae-bacterial consortium that has better performance in removing pollutants in POME and increasing the growth of microorganisms. This research aim by determining the effect of microalgae suspension concentration in the HRAR system towards the removal efficiency of Chemical Oxygen Demand (COD) and total nitrogen. The research was conducted in batch in the HRAR system that equipped with a paddle wheel, by variations of microalgae suspension concentration as 0; 10; 15; 20; and 25 (% v/v). The research was carried out for 7 days and used the sun as a source of light. Based on the research results, 25% of microalgae suspension concentration has the highest microalgae cell density, was 6,34 x 106 cells/mL and showed the best removal efficiency of COD and total nitrogen, were 78.79% and 80.37%.

 

 


Keywords


Bacterial; High Rate Algae Reactor (HRAR); Palm Oil Mill Effluent (POME); Pollutant; Microalgae

Full Text:

PDF

References


Anggraeni, B.I., Slamet, A., Hermana, J., 2012. Efek Aerasi Terhadap Dominasi Mikroba dalam Sistem High Rate Algae Pond (HRAP) untuk Pengolahan Air Boezem Morokrembangan. Jurnal Teknik Lingkungan, 1-7.

Assemany, P.P, Calijuri, M.L., Couto, E.A., Souzo, M.H.B., Silva, N.C., Santiago, A.F., Castro, J.S., 2015. Algae/Bacteria Consortium in High Rate Ponds: Influence of Solar Radiation on the Phytoplankton Community. Ecological Engineering, 77:154–162.

Can, S.S., Demir, V., dan Can, E., 2015. Evaluating the Dilution of Municipal Wastewater on Biomass Increase, Lipid Production and Nutrient Removal by the Blue-Green Algae Spirulina plantesis (Geisler). Fresenius Environmental Bulletin, 24(3a):904-909

Chen, Z., Zhang, X, Jiang, Z, Xuehui, C., He, H., dan Zhang, X., 2016. Light/Dark Cycle of Microalgae Cells in Raceway Ponds: Effects of Paddlewheel Rotational Speeds and Baffles Installation. Bioresource Technology, 219:387-391.

Farahdiba, A.U., Putra, A.H., Yulianto, A., Setyono, M.B., dan Saputra, W.A., 2018. Performance of Algae Reactor for Nutrient and Organic Compound Removal. Internatonal Conference on Science and Technology. UGM, Yogyakarta, 7-8 Agustus 2018.

Febijanto, Irhan., 2010. Pengurangan Gas Rumah Kaca dari Limbah Cair di Pabrik Kelapa Sawit Pinang Tinggi, Jambi dengan CDM. JRL. 6(3):275-290.

Habib M.A.B., Yusoff F.M., Phang S.M., Kamarudin M.S., dan Mohamed, S., 2003. Growth and Nutritional Values of Molina micrura Fed on Chlorella vulgaris Grown in Digested Palm Oil Mill Effluent. Asian Fisheries Science, 16:107-119.

Hadiyanto dan Azim, M., 2012. Mikroalga Sumber Pangan dan Energi Masa Depan. UPT UNDIP Press, Semarang.

Hadiyanto, 2013. Valorisasi Mikroalga untuk Pengolahan Limbah Cair Kelapa Sawit dan sebagai Sumber Energi dan Pangan Alternatif. Prosiding Rekayasa Kimia dan Proses, 1-11.

Hadiyanto, Elmore, S., Gerven, T. V., dan Stankiewicz, A., 2013. Hydrodynamic Evaluations in High Rate Algae Pond (HRAP) Design. Chemical Engineering Journal, 217:231-239.

Hariz, H.B., dan Takriff, M.S., 2017. Growth and Biomass Production of Native Microalgae Chlorella sp., Chlamydomonas sp. and Scenedesmus sp. Cultivated in Palm Oil Mill Effluent (POME) at Different Cultivation Cultivation. Transaction on Science and Technology, 4:298-311.

Kazamia, E., Czesnick, H., Nguyen V., Sherwood, E., Sasso, S., dan Smith, G., 2012. Mutualistic Interaction Between Vitamin B12 Dependent Algae and Heterotrophic Bacteria Exhibit Regulation. Environmental Microbiologi, 1:1-11.

Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang Q, Dewulf J, Malcata FX, dan van Langenhove., 2010. Enhanced CO2 Fixation and Biofuel Production via Microalgae: Recent Developments and Future Directions. Trends Biotechnol, 28:371–380.

Lau P.S., Tam N. F. Y. dan Wong Y. S., 1995. Effect of Algal Density on Nutrient Removal from Primary Settled Wastewater. Environmental Pollution. 89:59–66.

Mahdi, M.Z., Titisari, Y.N., dan Hadiyanto., 2012. Evaluasi Pertumbuhan Mikroalga dalam Medium POME: Variasi Jenis Mikroalga, Medium dan Waktu Penambahan Nutrient. Jurnal Teknologi Kimia dan Industri, 1(1):284-291.

Park, J.B.K,. Crags, R.J, dan Shilton, A.N., 2011, Wastewater Treatment High Rate Algal Ponds for Biofuel Production. Journal of Bioresource Technology, 102:35-42.

Prayitno, J., 2016. Pola Pertumbuhan dan Pemanenan Biomassa dalam Fotobioreaktor Mikroalga untuk Penangkapan Karbon. Jurnal Teknologi Lingkungan, 17(1):45-52.

Puspitasari, D., Slamet, A., dan Hermana, J., 2014. Efek Pencahayaan pada Sistem HRAR untuk Menurunkan Kandungan Minyak Solar dalam Air Limbah. Jurnal Teknik Pomits. 3(2):109-113.

Rahardjo, P.N., 2009. Studi Banding Teknologi Pengolahan Limbah Cair Pabrik Kelapa Sawit. Jurnal Teknik Lingkungan, 10(1):09-18.

Reynold, C.S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

Septiani, W.D., Slamet, A., dan Hermana, J., 2014. Pengaruh Konsentrasi Substrat terhadap Laju Pertumbuhan Alga dan Bakteri Heterotropik pada Sistem HRAR. Jurnal Teknik Pomits, 3(2):98-103

Singh, S.P., dan Singh, P., 2015. Effect of Temperature and Light on the Growth of Algae Species: A Review. Renew Sustain Energy, Rev 50:431–444.

Slamet, A., 2016. Peningkatan Fungsi Boezem Morokrembangan Sebagai Pengolah Air Limbah Perkotaan Menggunakan Sistem Alga-Bakteri. Disertasi, Bidang Keahlian Teknik Lingkungan, Institut Teknologi Sepuluh Nopember, Surabaya.

Waizh, N. T., 2017. Pengaruh Densitas Alga Dan Kedalaman Reaktor Terhadap Penurunan BOD dan COD Limbah Cair Domestik. Jurnal Teknik Lingkungan, 1-12.

Yonas, R., Irzandi, U., dan Satriadi, H., 2012. Pengolahan Limbah POME (Palm Oil Mill Effluent) dengan Menggunakan Mikroalga. Jurnal Teknologi Kimia dan Industri, 1(1):7-13.

Zalfiatri, Y., Restuhadi, F., Maulana, T., 2017. Pemanfaatan Simbiosis Mikroorganisme B-DECO3 dan Mikroalga Chlorella sp. untuk Menurunkan Pencemaran Limbah Cair Pabrik Kelapa Sawit. Dinamika Lingkungan Indonesia, 4(1):8-17.

Zulfarina, S., Irda, dan Putri, H.T., 2013. Potential Utilization of Algae Chlorella pyrenoidosa For Rubber Waste Management. Prosiding Semirata FMIPA Universitas Lampung, 1-10.

Zulkifli dan Ami, A., 2001. Pengolahan Limbah Cair Pabrik Tahu dengan Rotating Biological Contactor (RBC) pada Skala Laboratorium. Limnotek, 8(1)21-34.




DOI: https://doi.org/10.29303/jstl.v7i1.213

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Sains Teknologi dan Lingkungan (JSTL)

(ISSN Print: 2477-0329, ISSN Online: 2477-0310)

Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Mataram