Distribusi Kadar Air Tanah Dengan Irigasi Curah Pada Budidaya Tanaman Stevia (Stevia rebaudiana B.)

Distribution of Soil Water Content under Sprinkler Irrigation in Stevia (Stevia rebaudiana B.) Cultivation


  • Achmad Malkan Mudzakir Universitas Negeri Jember
  • Cahyoadi Bowo Universitas Negeri Jember
  • Petrus Andianto PT. Daya Santosa Rekayasa, Gunung Sahari Center Blok A2 – 3 Jl. Industri Raya 1, Jakarta Pusat 10720




Selected: Sprinkler irrigation performance, Soil water content, Water requirement, Coefficient of uniformity, Stevia


Sprinkler irrigation emulates rainfall patterns to supply plant water, improving soil conditions and ensuring sustained field performance. This study investigated the impact of sprinkler irrigation on Stevia's Coefficient of Uniformity (CU), soil moisture level, and crop coefficient (Kc). The experiment was conducted in Karangploso Village, Malang Regency, 700 m above sea level. Stevia plants were cultivated using sprinkler irrigation, and their water requirements were assessed by analyzing changes in soil moisture after irrigation. The results showed that sprinkler irrigation significantly increased soil moisture content. At a depth of 0-20 cm, soil moisture increased by an average of 0.135 cm3/cm3 (water depth of 27 mm), while at depths of 20-40 cm and 40-60 cm, the increase was 0.121 cm3/cm3 (24 mm) and 0.065 cm3/cm3 (13 mm), respectively, with a total water depth of 64 mm for 0-60 cm soil depth of 70 mm irrigation event. The crop coefficient (Kc) of Stevia varied during its growth stage, starting from 0.55 in the first week and gradually increasing to 0.57 in the 6th week. The total water requirement for Stevia until harvest at 60 days reached 279.8 mm. This finding emphasize the importance of monitoring and adjusting irrigation practices to ensure optimal growth of Stevia. Sprinkler irrigation effectively increased soil moisture content and determined the appropriate water requirement and Kc value for Stevia cultivation.


Abbott, L. K., & Manning, D. A. C. (2015). Soil Health and Related Ecosystem Services in Organic Agriculture. Sustainable Agriculture Research, 4(3), 116. https://doi.org/10.5539/sar.v4n3p116

Fajar, F., Prawitosari, T., & Munir, A. (2019). Rancang Bangun dan Kinerja Irigasi curah Hand Move Pada Lahan Kering. Jurnal Agritechno, 12(1), 17–27. https://doi.org/10.20956/at.v12i1.183

Fibriana, R., Ginting, Y. S., Ferdiansyah, E., & Mubarak, S. (2018). Analisis Besar Atau Laju Evapotranspirasi pada Daerah Terbuka. Agrotekma: Jurnal Agroteknologi Dan Ilmu Pertanian, 2(2), 130. https://doi.org/10.31289/agr.v2i2.1626

Gissi, E., Gaglio, M., Aschonitis, V. G., Fano, E. A., & Reho, M. (2018). Soil-related ecosystem services trade-off analysis for sustainable biodiesel production. Biomass and Bioenergy, 114(2017), 83–99. https://doi.org/10.1016/j.biombioe.2017.08.028

Hassan, D. F., Ati, A. S., & Neima, A. K. S. (2021). Effect of Irrigation Uniformity and Efficiency on Water Consumption, Yield of Maize Using Different Irrigation and Cultivation Methods. International Journal of Agricultural and Statistical Sciences, 17, 1441–1450.

Osman, M., Hassan, S. B., & Yusof, K. B. W. (2014). Effect of Combination Factors of Operating Pressure, Nozzle Diameter and Riser Height on Sprinkler Irrigation Uniformity. Applied Mechanics and Materials, 695, 380–383. https://doi.org/10.4028/www.scientific.net/amm.695.380

Patle, G. T., Sikar, T. T., Rawat, K. S., & Singh, S. K. (2019). Estimation of infiltration rate from soil properties using regression model for cultivated land. Geology, Ecology, and Landscapes, 3(1), 1–13. https://doi.org/10.1080/24749508.2018.1481633

Prasetya, M. H. E., Maghfoer, M. D., & Santoso, M. (2014). Pengaruh macam dan kombinasi bahan organik terhadap pertumbuhan dan hasil tanaman Stevia ( Stevia rebaudiana B .). J. Prod Tan, 2(6), 503–509.

Putra, A., Ichwana, I., & Chairani, S. (2017). Efisiensi Keseragaman Distribusi Air Dari Variasi Ketinggian Pipa Pada Sistem Irigasi Curah. Jurnal Ilmiah Mahasiswa Pertanian, 2(2), 430–438. https://doi.org/10.17969/jimfp.v2i2.2971

Singh, K. B., Jalota, S. K., & Gupta, R. K. (2015). Soil water balance and response of spring maize (Zea mays) to mulching and differential irrigation in Punjab. Indian Journal of Agronomy, 60(2), 279–284.

Tufaila, M., Mpia, L., & Karim, J. (2017). Analisis Neraca Air Lahan terhadap Jenis Tanah yang Berkembang pada Daerah Karts di Kecamatan Parigi Kabupaten Muna Sulawesi Tenggara. Agritech, 37(2), 215. https://doi.org/10.22146/agritech.16747

Talebmorad, H., Abedi-Koupai, J., Eslamian, S., Mousavi, S. F., Akhavan, S., Ostad-Ali-Askari, K., & Singh, V. P. (2021). Evaluation of the impact of climate change on reference crop evapotranspiration in Hamedan-Bahar plain. International Journal of Hydrology Science and Technology, 11(3), 333–347. https://doi.org/10.1504/IJHST.2021.114554

Yan, H., Hui, X., Li, M., & Xu, Y. (2020). Development in sprinkler irrigation technology in China*. Irrigation and Drainage, 69(S2), 75–87. https://doi.org/10.1002/ird.2435

Valentín, F., Nortes, P. A., Domínguez, A., Sánchez, J. M., Intrigliolo, D. S., Alarcón, J. J., & López-Urrea, R. (2020). Comparing evapotranspiration and yield performance of maize under sprinkler, superficial and subsurface drip irrigation in a semi-arid environment. Irrigation Science, 38(1), 105–115. https://doi.org/10.1007/s00271-019-00657-z

Zayton, A. H. M., Guirguis, A. E., & Allam, K. A. (2014). Effect of Sprinkler Irrigation Management and Straw Mulch on Yield, Water Consumption and Crop Coefficient of Peanut in Sandy Soil. Egyptian Journal of Agricultural Research, 92(2), 657–673. https://doi.org/10.21608/ejar.2014.155202

Zheng, L., Pan, Y., Gong, H., Huang, Z., & Zhang, C. (2020). Comparing groundwater storage changes in two main grain producing areas in china: Implications for sustainable agriculturalwater resources management. Remote Sensing, 12 (13). https://doi.org/10.3390/rs12132151.