Konversi Empiris Summary Magnitude, Local Magnitude, Body-Wave Magnitude, Surface Magnitude, dan Moment Magnitude Menggunakan Data Gempabumi 1922-2020 di Nusa Tenggara Barat
DOI:
https://doi.org/10.29303/jstl.v7i1.198Keywords:
summary magnitude, local magnitude, body-wave magnitude, surface magnitude, moment magnitudeAbstract
The existence of magnitude type variation from existing earthquake catalogue sources show that uniforming process is necessary. Beside that these type of magnitude will saturates in certain value, which are different with moment magnitude (Mw) which is not saturated and can describe earthquake process better. Our research initially did compatibility test between summary magnitude which is largely used by BMKG with other magnitude type. Furthermore, the purpose of our research is determination of empirical relation between magnitude type summary magnitude (M), local magnitude (ML), body-wave magnitude (mb), dan surface magnitude (Ms) which are usually used by earthquake catalogues to Mw. Method used in this research is linear regression using data set from BMKG, ISC-EHB, USGS, and Global CMT catalogues with are limited in West Nusa Tenggara and surrounding area. Data used in this research contains of 24.703 earthquake events during period May 9th 1922 until June 27th 2020. The result of this research shows there was good relation between M magnitude type with others magnitude type. Our research also found a conversion formula of M, ML, MLv, mb, and Ms to Mw with well-defined correlation.References
BMKG, 2020. BMKG Data Repository. http://repogempa.bmkg.go.id/query.php [11 November 2020].
Global CMT, 2020. Global CMT Earthquake Catalog. https://www.globalcmt.org/- CMTsearch.html [11 November 2020].
Gutenberg, B., Richter, C.F., 2010. Magnitude and energy of earthquakes. Ann. Geophys. 53, 7–12. https://doi.org/10.4401/ag-4588
Hanks, T.C., Kanamori, H., 1979. A moment magnitude scale. J. Geophys. Res. B Solid Earth 84, 2348–2350. https://doi.org/10.1029/JB084iB05p02348
Idriss, I.M., 1985. Evaluating Seismic Risk in Engineering Practice, in: Proceedings of The Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Fransisco, pp. 255–320.
ISC, 2020. ISC-EHB Earthquake Bulletin. http://www.isc.ac.uk/isc-ehb/search/bulletin/ [11 November 2020].
Mahendra Taruna, R., Haris Banyunegoro, V., Daniarsyad, G., 2018. Peak ground acceleration at surface for Mataram city with a return period of 2500 years using probabilistic method. MATEC Web Conf. 195. https://doi.org/10.1051/matecconf/201819503019
Papazachos, B.C., Scordilis, E.M., Panagiotopoulos, D.G., Papazachos, C.B., Karakaisis, G.F., 2004. Global Relations Between Seismic Fault Parameters and Moment Magnitude of Earthquakes. Bull. Geol. Soc. Greece XXXVI, 1482–1489.
Potsdam, G., 2020. scmag-Calculates magnitudes of different types. https://docs.gempa.de/seiscomp3/current/apps/scmag.html [11 November 2020].
usgen, 2017. Peta sumber dan bahaya gempa Indonesia tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementerian PUPR.
Richter, C.F., 1935. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am. 25, 1–32.
Scordilis, E.M., 2006. Empirical global relations converting MS and mb to moment magnitude. J. Seismol. 10, 225–236. https://doi.org/10.1007/s10950-006-9012-4
Tang, C.C., Zhu, L., Huang, R., 2016. Empirical Mw-ML, Mb, and Msconversions in Western China. Bull. Seismol. Soc. Am. 106, 2614–2623. https://doi.org/10.1785/0120160148
USGS, 2020. USGS Earthquake Catalog. https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes [11 November 2020].
Vanek, J., Zatopek, A., Karnik, V., Kondorskaya, N.V., Riznichenko, Y.V., Savarensky, E.F., Soloviev, S.L. and Shebalin, N.V., 1962. Standardization of magnitude scales. Bull. Acad. Sci. USSR Geophys 108–111.
Yuliara, I.M., 2016. Modul Regresi Linear Sederhana. https://doi.org/10.1093/bja/62.4.429.