Pengukuran Konsentrasi Coarse Particle di Ruangan dengan Sistem Kontrol Temperatur Udara
DOI:
https://doi.org/10.29303/jstl.v10i2.595Keywords:
dust, particulate matter, air cooler, air, roomAbstract
Particulate matter is an air emission that is compossed of particle and liqud dropplet. This suspension is easily measured in several size distributions: ultrafine particle, fine particle, coarse particle, and total suspended particle. Coarse particle is commonly used as a parameter of air quality index. This research aims to measure coarse particle concentrations inside an air-conditioned room. The measurement was conducted using a particulate sensor and a microcontroller for an hour. All measurements were varied into: active and non active room conditions. The results show that human activities and movements in the first variation has higher concentration than the second one. The difference is about 12 µg/m3. human activities have a significant role in the submicron particulate distribution inside a room. Air-conditioned room has higher concentration than a common room.References
Amalia, R., Wardoyo, A. Y. P., Dharmawan, H. A., Nurhuda, M., & Budianto, A., 2021. Development of a measurement system for volcanic CO and CO2 concentrations. ISESD. 1:1-6.
Budianto, A., Wardoyo, A. Y. P., Masruroh, Dharmawan, H. A., & Nurhuda, M., 2021. Performance test of an aerosol concentration measurement system based on quartz crystal microbalance. IOP Conference Series: Earth and Env. Sci. 1811(1).
Butwin, M. K., von Löwis, S., Pfeffer, M. A., & Thorsteinsson, T., 2019. The effects of volcanic eruptions on the frequency of particulate matter suspension events in Iceland. J. Aerosol Sci. 128: 99–113.
Dimitriou, K., Bougiatioti, A., Ramonet, M., Pierros, F., Michalopoulos, P., Liakakou, E., Solomos, S., Quehe, P. Y., Delmotte, M., Gerasopoulos, E., Kanakidou, M., & Mihalopoulos, N., 2021. Greenhouse gases (CO2 and CH4) at an urban background site in Athens, Greece: Levels, sources and impact of atmospheric circulation. Atmos. Env. 253: 118372.
Fujitani, Y., Takahashi, K., Fushimi, A., Hasegawa, S., Kondo, Y., Tanabe, K., & Kobayashi, S., 2020. Particle number emission factors from diesel trucks at a traffic intersection: Long-term trend and relation to particle mass-based emission regulation. Atmospheric Environment: X 5: 100055.
Hachem, M., Loizeau, M., Saleh, N., Momas, I., & Bensefa-Colas, L. (2021). Short-term association of in-vehicle ultrafine particles and black carbon concentrations with respiratory health in Parisian taxi drivers. EnV. Int. 147: 106346.
Hadi, K. Al, Wardoyo, A. Y. P., Juswono, U. P., Naba, A., Budianto, A., & Adi, E. T. P., 2022. A Study of Erythrocyte Deformation Level Related to Biomass Burning Emission Exposures Using Artificial Neural Networks. Polish J. of Env. Stud. 31(6): 5037–5046.
Hadi, K. A., Wardoyo, A. Y. P., Naba, A., Juswono, U. P., & Budianto, A., 2021. Investigation of burning rate on particulate matter emission factor of rice straw burning (case study in Lombok Island, Indonesia). Journal of Physics: Conference Series.
He, Y., Lan, X., & Zhu, L., 2023. Effect of urban green infrastructure on pedestrian exposure to ultrafine particles: A case study of Guangzhou, China. Urban Climate 49: 101453.
Jameson, G. J., Cooper, L., Tang, K. K., & Emer, C., 2020. Flotation of coarse coal particles in a fluidized bed: The effect of clusters. Minerals Engineering, 146: 106099.
Khoa, N. D., Li, S., Phuong, N. L., Kuga, K., Yabuuchi, H., Kan-O, K., Matsumoto, K., & Ito, K., 2023. Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system, down to the terminal bronchiole. Computer Methods and Programs in Biomedicine 237: 107589.
Madhwal, S., Prabhu, V., Sundriyal, S., & Shridhar, V. (2020). Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environmental Monitoring and Assessment, 192(3).
Mahasakpan, N., Chaisongkaew, P., Inerb, M., Nim, N., Phairuang, W., Tekasakul, S., Furuuchi, M., Hata, M., Kaosol, T., Tekasakul, P., & Dejchanchaiwong, R., 2023. Fine and ultrafine particle- and gas-polycyclic aromatic hydrocarbons affecting southern Thailand air quality during transboundary haze and potential health effects. J. Env. Sci. 124: 253–267.
Marco, C. De, Ruprecht, A. A., Pozzi, P., Munarini, E., Ogliari, A. C., Mazza, R., & Boffi, R., 2016. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions : a new educational antismoking instrument. Multidisc. Resp. Med. 1–5.
Minguillón, M. C., Rivas, I., Moreno, T., Alastuey, A., Font, O., Córdoba, P., Álvarez-Pedrerol, M., Sunyer, J., & Querol, X., 2015. Road traffic and sandy playground influence on ambient pollutants in schools. Atmospheric Environment 111: 94–102.
Mӧller, W., Felten, K., Sommerer, K., Scheuch, G., Meyer, G., Meyer, P., Hӓussinger, K., & Kreyling, W. G., 2008. Deposition, Retention, and Translocation of Ultrafine Particles from the Central Airways and Lung Periphery. American Journal of Respiratory and Critical Care Medicine 177: 426–432.
Oetari, P. S., Hadi, S. P., & Huboyo, H. S., 2019. Trace elements in fine and coarse particles emitted from coal-fired power plants with different air pollution control systems. Journal of Environmental Management, 250: 109497.
Qi, M., Zhu, X., Du, W., Chen, Y., Chen, Y., Huang, T., Pan, X., Zhong, Q., Sun, X., Zeng, E. Y., Xing, B., & Tao, S., 2017. Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing. Env. Poll. 220: 704–712.
Ravindra, K., Singh, T., Singh, V., Chintalapati, S., Beig, G., & Mor, S., 2023. Understanding the influence of summer biomass burning on air quality in North India: Eight cities field campaign study. Sci. of the Tot. Env. 861: 160361.
Sagastume Gutiérrez, A., Mendoza Fandiño, J. M., Cabello Eras, J. J., & Sofan German, S. J., 2022. Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia). Development Engineering 7.
Shi, Y., & Li, X., 2018. Purifier or fresh air unit? A study on indoor particulate matter purification strategies for buildings with split air-conditioners. Building and Environment 131: 1–11.
Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M. E., Hirvonen, M. R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J. P., & Brunekreef, B., 2015. Health impacts of anthropogenic biomass burning in the developed world. European Respiratory Journal 46(6): 1577–1588.
Sioutas, C., Delfino, R. J., & Singh, M., 2005. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental Health Perspectives 113(8): 947–956.
Siregar, U. A., Valzon, M., Fitrianti, & Budianto, A., 2023. Effect of peat biomass smoke exposure on oxidative stress in Wistar rats. Jurnal Kedokteran dan Kesehatan Indonesia 14(2): 121–127.
Suriyawong, P., Chuetor, S., Samae, H., Piriyakarnsakul, S., Amin, M., Furuuchi, M., Hata, M., Inerb, M., & Phairuang, W., 2023. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 9(3): e14261.
Wang, Y., Wang, Y., Liu, W., Chen, D., Wu, C., & Xie, J., 2019. An aerosol sensor for PM1 concentration detection based on 3D printed virtual impactor and SAW sensor. Sensors and Actuators, A: Physical 288: 67–74.
Wardoyo, A., & Budianto, A., 2017. A DC Low Electrostatic Filtering System For PM2.5 Motorcycle Emission. IEEE Xplore, 1: 51–54.
Zhang, J. J., Wei, Y., & Fang, Z., 2019. Ozone pollution: A major health hazard worldwide. Frontiers in Immunology 10: 1–10.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.