Klasifikasi Multiclass Pada Sound Healing menggunakan Algoritma Pseudo Neareset Neighbor

Authors

  • Cipta Ramadhani Jurusan Teknik Elektro Universitas Mataram, Universitas Mataram
  • I Made Budi Suksmadana Jurusan Teknik Elektro Universitas Mataram, Universitas Mataram
  • Made Sutha Yadnya Jurusan Teknik Elektro Universitas Mataram, Universitas Mataram

DOI:

https://doi.org/10.29303/jstl.v10i4.751

Keywords:

Sound Healing, classification, Pseudo-Nearest Neighbor

Abstract

Sound healing, or commonly referred to as music therapy using Acoustic Sound for Wellbeing (ASW) equipment such as drums, gongs, bells, and other types that produce specific frequency vibrations, is used in the medical field to help patients experiencing anxiety or depression. Currently, research on sound healing focuses on methods to identify appropriate frequencies that influence stress and anxiety experienced by patients. This study presents the implementation of the Pseudo-Nearest Neighbour (P-NN) algorithm for classifying multiclass ASW. In general, the P-NN algorithm performs better for multiclass scenarios, particularly in identifying outlier data in each class. Furthermore, P-NN provides better performance for all confusion matrix parameters. Using two classes (Gong and Singing Bowl), the accuracy of the P-NN algorithm exceeds 92%. This demonstrates that the P-NN algorithm can provide better performance in handling outliers within the ASW dataset.

References

Baird, Alice;Schuller, B. (n.d.). PRESENTING THE ACOUSTIC SOUNDS FOR WELLBEING DATASET AND BASELINE CLASSIFICATION RESULTS. 2019. https://doi.org/https://doi.org/10.5281/zenodo.3360675

Bradt, J., Dileo, C., Grocke, D., & Magill, L. (2011). Music interventions for improving psychological and physical outcomes in cancer patients. In J. Bradt (Ed.), Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD006911.pub2

Brown, B., Rutherford, P., & Crawford, P. (2015). The role of noise in clinical environments with particular reference to mental health care: A narrative review. International Journal of Nursing Studies, 52(9), 1514–1524. https://doi.org/10.1016/j.ijnurstu.2015.04.020

Chen, S., Zhang, H., Ma, J., & Xie, H. (2023). Asynchronous Track-to-Track Association Based on Pseudo Nearest Neighbor Distance for Distributed Networked Radar System. Electronics, 12(8), 1794. https://doi.org/10.3390/electronics12081794

Gou, J., Qiu, W., Yi, Z., Shen, X., Zhan, Y., & Ou, W. (2019). Locality constrained representation-based K-nearest neighbor classification. Knowledge-Based Systems, 167, 38–52. https://doi.org/10.1016/j.knosys.2019.01.016

Hendrawan, I. D. N. T., Dwidasmara, I. B. G., Kadyanan, I. G. A. G. A., Suputra, I. P. G. H., Karyawati, A. A. I. N. E., & Mahendra, I. B. M. (2022). Classification of Typhus and Dengue Fever Using the Pseudo Nearest Neighbor Algorithm. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 11(1), 147. https://doi.org/10.24843/JLK.2022.v11.i01.p16

Jiarui, H., Dinghan, K., & Yimeng, M. (2024). An Improved Pseudo Nearest Neighbor: Minkowski Distance-weighted Classification Algorithm. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), 669–674. https://doi.org/10.1109/ICETCI61221.2024.10594686

Pambudi, R. A., Adiwijaya, & Mubarok, M. S. (2019). Multi-label classification of Indonesian news topics using Pseudo Nearest Neighbor Rule. Journal of Physics: Conference Series, 1192, 012031. https://doi.org/10.1088/1742-6596/1192/1/012031

Pheasant, R. J. (2016). Book review. Applied Acoustics, 114, 18. https://doi.org/10.1016/j.apacoust.2016.06.005

Pratama, Y., Abdiansyah, A., & Miraswan, K. J. (2023). Sentiment Analysis Using PSEUDO Nearest Neighbor and TF-IDF TEXT Vectorizer. Sriwijaya Journal of Informatics and Applications, 4(2). https://doi.org/10.36706/sjia.v4i2.68

Quinn, C. A., Burns, P., Gill, G., Baligar, S., Snyder, R. L., Salas, L., Goetz, S. J., & Clark, M. L. (2022). Soundscape classification with convolutional neural networks reveals temporal and geographic patterns in ecoacoustic data. Ecological Indicators, 138, 108831. https://doi.org/10.1016/j.ecolind.2022.108831

Ramadhani, cipta et al. (2021). MULTICLASS CLASSIFICATION OF SOUND HEALING WITH K-NEAREST NEIGHBOR ALGORITHM. DIELEKTRIKA, 8(2), 156–163.

Zeng, Y., Yang, Y., & Zhao, L. (2009). Pseudo nearest neighbor rule for pattern classification. Expert Systems with Applications, 36(2), 3587–3595. https://doi.org/10.1016/j.eswa.2008.02.003

Downloads

Published

2024-12-20

Most read articles by the same author(s)