Klasifikasi Multiclass Pada Sound Healing menggunakan Algoritma Pseudo Neareset Neighbor
DOI:
https://doi.org/10.29303/jstl.v10i4.751Keywords:
Sound Healing, classification, Pseudo-Nearest NeighborAbstract
Sound healing, or commonly referred to as music therapy using Acoustic Sound for Wellbeing (ASW) equipment such as drums, gongs, bells, and other types that produce specific frequency vibrations, is used in the medical field to help patients experiencing anxiety or depression. Currently, research on sound healing focuses on methods to identify appropriate frequencies that influence stress and anxiety experienced by patients. This study presents the implementation of the Pseudo-Nearest Neighbour (P-NN) algorithm for classifying multiclass ASW. In general, the P-NN algorithm performs better for multiclass scenarios, particularly in identifying outlier data in each class. Furthermore, P-NN provides better performance for all confusion matrix parameters. Using two classes (Gong and Singing Bowl), the accuracy of the P-NN algorithm exceeds 92%. This demonstrates that the P-NN algorithm can provide better performance in handling outliers within the ASW dataset.References
Baird, Alice;Schuller, B. (n.d.). PRESENTING THE ACOUSTIC SOUNDS FOR WELLBEING DATASET AND BASELINE CLASSIFICATION RESULTS. 2019. https://doi.org/https://doi.org/10.5281/zenodo.3360675
Bradt, J., Dileo, C., Grocke, D., & Magill, L. (2011). Music interventions for improving psychological and physical outcomes in cancer patients. In J. Bradt (Ed.), Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD006911.pub2
Brown, B., Rutherford, P., & Crawford, P. (2015). The role of noise in clinical environments with particular reference to mental health care: A narrative review. International Journal of Nursing Studies, 52(9), 1514–1524. https://doi.org/10.1016/j.ijnurstu.2015.04.020
Chen, S., Zhang, H., Ma, J., & Xie, H. (2023). Asynchronous Track-to-Track Association Based on Pseudo Nearest Neighbor Distance for Distributed Networked Radar System. Electronics, 12(8), 1794. https://doi.org/10.3390/electronics12081794
Gou, J., Qiu, W., Yi, Z., Shen, X., Zhan, Y., & Ou, W. (2019). Locality constrained representation-based K-nearest neighbor classification. Knowledge-Based Systems, 167, 38–52. https://doi.org/10.1016/j.knosys.2019.01.016
Hendrawan, I. D. N. T., Dwidasmara, I. B. G., Kadyanan, I. G. A. G. A., Suputra, I. P. G. H., Karyawati, A. A. I. N. E., & Mahendra, I. B. M. (2022). Classification of Typhus and Dengue Fever Using the Pseudo Nearest Neighbor Algorithm. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 11(1), 147. https://doi.org/10.24843/JLK.2022.v11.i01.p16
Jiarui, H., Dinghan, K., & Yimeng, M. (2024). An Improved Pseudo Nearest Neighbor: Minkowski Distance-weighted Classification Algorithm. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), 669–674. https://doi.org/10.1109/ICETCI61221.2024.10594686
Pambudi, R. A., Adiwijaya, & Mubarok, M. S. (2019). Multi-label classification of Indonesian news topics using Pseudo Nearest Neighbor Rule. Journal of Physics: Conference Series, 1192, 012031. https://doi.org/10.1088/1742-6596/1192/1/012031
Pheasant, R. J. (2016). Book review. Applied Acoustics, 114, 18. https://doi.org/10.1016/j.apacoust.2016.06.005
Pratama, Y., Abdiansyah, A., & Miraswan, K. J. (2023). Sentiment Analysis Using PSEUDO Nearest Neighbor and TF-IDF TEXT Vectorizer. Sriwijaya Journal of Informatics and Applications, 4(2). https://doi.org/10.36706/sjia.v4i2.68
Quinn, C. A., Burns, P., Gill, G., Baligar, S., Snyder, R. L., Salas, L., Goetz, S. J., & Clark, M. L. (2022). Soundscape classification with convolutional neural networks reveals temporal and geographic patterns in ecoacoustic data. Ecological Indicators, 138, 108831. https://doi.org/10.1016/j.ecolind.2022.108831
Ramadhani, cipta et al. (2021). MULTICLASS CLASSIFICATION OF SOUND HEALING WITH K-NEAREST NEIGHBOR ALGORITHM. DIELEKTRIKA, 8(2), 156–163.
Zeng, Y., Yang, Y., & Zhao, L. (2009). Pseudo nearest neighbor rule for pattern classification. Expert Systems with Applications, 36(2), 3587–3595. https://doi.org/10.1016/j.eswa.2008.02.003
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.